PERSISTENCE IN MUSIC DATA STRUCTURES

L. E. Nugroho A. S. M. Sajeev
James Cook University Monash University

Abstract

Persistence is the concept of presenvirigrmationin their original structure.This allows the
designof suitablestructuresto manipulatedatairrespectiveof their life-span. Much of the

current research into persistencéishe areaof providing programmingand systemsupport.

This paper,on the otherhand, gives an applicationof persistencan implementinga flexible

data structure for computer music. In gense computermusic dataare like text-documents:

they need to be edited, filed and used. Orotherhand, unlike ordinarytext, they are highly
structured. This makes the area interesting to apgelprinciplesof persistencgprogramming.

We have designed a persistent music structure and usetiétconstructionof a music editor

and player. We analyze the advantages and disadvantages of using persistence in this context.

Keywords
Persistence, Computer Music, Data Structures

Introduction

Persistencas the conceptpreservinginformation in their original form for reuse. Much
researcthasgoneinto the designof persistentarchitectureq43], operatingsystems[1], and
programminglanguageg15]. In a persistentprogrammingenvironment,the life-span of an
object is orthogonal to its type. It hBsenarguedthat this would allow a greaterflexibility in
designingdatastructuresin a traditional programmingenvironment,the data structureused
during the executionof a programcan be quite different from the structure(normally a flat
sequence) used for long term storage file. In cases wheréatahasto be movedback and
forth betweenlong and shortterm storagestructuresthe data structuremust be constructed
from scratch each time. Thwogrammethasto write the codeto do this. Thereis a tendency
amongprogrammerdo designdatastructuressuch that the code neededor conversionis
minimized. Obviously this results in a compromise becaLsere appropriateshort-termdata
structure could have been designed, but for the requirement of longtteage.For instance,
someC compilersusea linear structurefor the symboltable mainly becausehe table can be

www.manaraa.com

preserved as a file to be usedthg debuggerSuchtrade-offsare unnecessarin a persistent
programmingenvironmentincethe life-span of datais independenbf its structure. Inthis
paper,we testout this claim in a computermusic application. This paper reports how a
persistent data structure is designed for computer music editing, and what its conseareences
in terms of flexibility and performance.

In the next sections we describe soofieche commoncomputermusicformats,followed by a
brief discussion of our persistent programming environnignis is followed by a discussion
of the design o# persistenimusic datastructureandits implementationFinally we give our
conclusions.

Audio/Music File Formats

At present,there are many file formatsfor storing computermusic data, eachis designed
specifically for a particular system or purpose. It is common to grougliffieeent formatsinto

two categories self-describingormats andaw formats [17].A self-describingormatis one

that incorporategieviceparameters&ind encodinginto a file header.This meansthat various
settings can be individualized for any file. In a raw format, there is no encoding because the file
only contains raw data. A self-describing file is more flexible but completructure while a

raw format file has the opposite characteristidexibility is animportantfactorin choosinga

format for music data because music itself is not a static entity.

This work concentrate®nly on self-describingformat as it supportsmusic representation
better.

The structure of music

Music is similar to a story in the sense that they are both structured entities. inusictitself
is a form of story which hasits own forms of paragraphssentenceswords, and even
punctuationmarks. Musical sounds, like words, build larger structural entities : clauses,
sentences, and paragraphs [4]. Esttacturepart hasits own characteristicsTherearetimes
when themusic shouldbe playedsoftly, loudly, or evenwith changedempo(the speedit is

played).

The smallest unit in music isr@te A sequence of notes formgharase the smallestrhythmic
unit. Each phrase ends witltadenceand two or more phrasésild a sentenceShortsongs
usually have ongparagraph which is built from severalsentenced.ong songs,on the other
hand, may have morehanone logically-connectegaragraphsThereis no strict rule on this
structuring,but almostevery music has a structuresimilar to the above. While stories are
represented by structuring them from their logical parts, songs should be treated similarly.

www.manaraa.com

Searching for a model format

We start with a search for a model by looking at several popular forntes4IDI file format
[12,6], for example,supportsthe conceptof multiple patternsin a song, but the overall
structure is not clearly represented because a MIDisfitasicallya streamof MIDI messages
from and to various MIDI devices[7]. MIDI emphasizeson communicationamong its
elements, so music structure representation is not crucial.

Other file formats, like the Sound Blaster's VOC and CMF [6Jholcsupportmusic structure
representatiorlegantly.VOC formatis suitableonly for voice (non-musical)data becauset

only holds sample data amiesnot supportmusicalnotesand patterns CMF format, onthe
otherhand,is designedor music. It consists ofa headerblock, an instrumentblock, and a
music block,but the music blockadheredo the StandardViIDI format, so it is similar to the
above MIDI format.

Among those formats, only the Amiga's MOD format [17,9] provides a rigid basis for
structuredmusicrepresentationA song (or a MODule in Amiga's term) is always built on
three entities patterns notes andsamples. Anodule is a sequence of (not necessariigue,
but a maximumof 128) patternsA patternitself is a fixed sizearray of 64 (possiblyblank)
notes. Figure 1 and 2 show the structure and layout of a module, respectively.

Each note contains three information : the pitch of the noteffact commandspecifyinghow
the noteis to be played,anda samplenumbertelling which sampleis usedto play the note.
Figure 3showsthe layout of a note. The note'slengthis implicitly declaredby positioninga
non-blank note at the proper place in a pattern. The more the blank notes betweamdit®te
following non-blank note, the longer tipeeviousnon-blanknote. Someeffect commandsare
suppliedto make the music more realistic to some extent; some others are operationson
patterns and samples.

In the module term, a sample represents an instrument. A sample contaidigitened sound
data, which is obtained from a sampling and digitizing prodagkis processanalogsignals
of soundis convertedinto digital form. Oncethe signalsare digitized, they can be storedin

files. To play asample the digital datais convertedbackinto its analogform and outputto a
amplifier. Recent MOD format has a maximum of 31 samples.

www.manaraa.com

array of pattern sequence
(up to 128 patterns)

array of 64 notes in a paftern, 4 tracks in a note

[T I [| - —1 T
[T 1 I [T —1 T [I — T 1
| — — T [T 1 I [| I —
nJ] n n n|n n nln n
| # | | 463 # | # | | #63 # [# | | #63

pattefn #0 patterr{#1 pattefn #n

{ array of samples (up thl samples) {

sample #0
sample #n

sample #1
Figure 1 : The structure of a module

It is alsocommonfor the MOD format to have morethan one track. Most moduleshave 4
tracks,but 6-track and 8-track modulesare also availablerecently. Multiple tracks meanthat
multiple notes can be played at (almost) the same time.

The MOD format provides a good structtioerepresenimusic. Besides,it canbe loadedwith

various samples, thus making the music brighter. Wittsétmeple'sability to represenalmost
any kind of sound, there is no limit on sound variation that can be usadaadule.A module
sizeis also usually compact.However, the MOD format has some limitations. It cannot
representll typesof music. It cannot handlesome musical dynamics,mostly becauset is

note- and sample-orientedThis limitation makesthe MOD format not suitablefor classical
music, for example.Moreover,the MOD format cannotelegantlyhandlethe sameinstrument
playedin different ways. For example, picked and slappedbass guitar samplesmust be
distinguished.It cannotuse a commoninstrumentsampleand then processit accordingly.
However, itis not our researchaim to remedythis situation.What we areinterestedn is the
structural deficiencies of music formats.

www.manaraa.com

module name

sample #0 info

header | e

sample #m info

sequence info

.

\\\
patterns, notes data
A

sample #0 data

notes

V4

sample #m data

Figure 2 : The layout of a module

- Dytel e g DYte2 g Dyte3 g byted

7 07 07 07 0

v

-—r < »-4—p <
upper 12 bits for lower 12 bits for
4 bits note period 4 bits effect command
of sample of sample
number number

Figure 3 : The layout of a note

The MOD format has some weaknesses in terms of its structure as well. Rifistyl pattern
size sometimes makes unnatural splits on musical sentences or phrases. No méttey bow
short a phrase is, it fixed at 64 notes (longphrasesneed mordghanone pattern).Secondly,
the way of representingiote length by positioning notesbetweenblank notesis considered
inefficient. Thirdly, somenotesareredundantThis, however,is not consideredas a major
drawbackas redundancyverheads typically muchsmallerthan overall systemperformance
(accessibilityand storagespace) We address ouwork to improve the structurein order to
overcome these limitations.

The above situation is caused by the need of having two types of existence (short term and lon
term) of data. This forces programmers to include mapping code in their progranabtetbe
access both short term and long termadia. This is an extrawork, and obviously hasat least

two disadvantages. First, tinaad effort are spendinefficiently for a distractedtask. Second,
andthis is the caseof the MOD format, a good designcannotbe implementecberfectly. The
designemeedsto build a good structurefor musicrepresentationHowever, it is not easyto

deal with that structure in long-term storagedia.As a result,a compromises made which

www.manaraa.com

hasreducedthe quality of the design.A persistentprogrammingenvironment,on the other
hand, will allow us to concentrateon the designwithout worrying aboutthe life-spanof data
and its storage media.

Persistent Data Structures

Persistent C and its persistence functions

Persistence is the time period for whiddtaexistsandis usable.Atkinson, et. al.[2] defines
Six persistence categories, but we will only be interestéukibroadespersistenceange,that
is when the data outlives the program that created it.

Much research has gone into the desigpesistentsystems.Severalpersistenjpprogramming
languagedave beercreatedfor exampleNapier88[10], E [14], and x [15]. However not

much has been done in using such systems in developing applications.

Our research has beperformedin the contextof a simple extensionto the C languagg16].
This extensionis called Persistent C (pC). PersistentC makesminimal changesto the
original language, thus enabligarge communityof C programmergo programpersistence
with minimum efforts.

Persistent C provides two functionsiteplementpersistence pprintf and pscanf.The syntax
IS :

pprintf(<file_pointer>,<type_string>,<object_address>);
pscanf(<file_pointer>,<type_string>,<object_address>);

The pprintf function makesthe transitive closure of the objectwhoseaddress igiven as a
parameter persist in the form of a file. Tipgcanffunction retrievesback a persistenbjectto

the memory.Thereis norestrictionon the numberof pprintf and pscanfcalls in a program.
There is also no restriction on the data type in a call.

Note that we ar@isingthe underlyingfile systemfor storing persistenbbjects, thuseducing
the number of constructs to be built into the language.

Type checking

Conventional data filesarry no type declaration so we haveto build our own type checking
mechanism for pC. Persistent C cannot make use of C's type checking mechanism biscause it
only useful when data are still transient.

www.manaraa.com

To overcomethis problem, pCusesa string of characterdo describethe type of the data

structurebeing madepersistentThis string, called typestring is passedlong with the data

structureandis storedas a headerinformation. Subsequenaccesdo the datamust satisfy a

match between the persistent tygre the transienttype. The typestringapproachalsoplaysa

very important role in the implementation.This is explainedin detail in [11] (in future

implementations we plan to automatically deduce the typestring during parsing). Baloled

the character codes that form a typestring for the most common cases.

Persistent Music

The structure

The persistent music structure that we desigabuild is basedon the MOD structure,andis
called Persistent Music or pMusic for short. The MOD formatis a gooddesign,andour
purpose ido addflexibility to it. We replacethe fixed patternsize (array of 64 notes)with a

dynamic linked-list andissignan identificationkey to every patternsand notes.This helpsto

remove unnecessary pattern and note duplications which are present in the original structure.

Character
code

Type

c

character

Integer

float

long

double precision floa

array

structure

pointer

0..9

array dimension digit

self-referential pointe

end of
array/structure/union

Table 1 : Character code for typestrings

www.manaraa.com

module header

pattern D

sequence list of patterns,
4 tracks in each pattern

Figure 4 : The Persistent Music structure

oo

In pMusic, access to subordinate levels uses the subordinate's ID key. For eranipiede
in the song sequence contains a key that tells what pattern to play. The key is tip@aitax
of the pattern in the pattern array. Similarly, in each pattedein the patternlinked-list there
is a note key specifying what notegound. This key is thenusedto find the notein the note
tree. Such an indirect access uskeys isunavoidablaf patternand note uniquenesss to be

maintained.

The overall structure of a pMusic module is shown as follows :

typedef struct sanple {

char sanpl e_num /* sanpl e nunber */
char sanpl e_nane[20] ; /* sanple nane */
char sanpl e_l en; /* sanmple length */
char vol uneg; /* sample volume */
int rep_start; /* repeat posn */
int rep_len; /* repeat length */

char *sanple_data; /* sanple data */
} Sanpl €;

typedef struct note {
unsi gned | ong key; /* note key */

unsi gned peri od; /* note pitch */
char |ength; /* note length */
char effect; /* sound effect */
char param /* effect param */
char sanpl e_num /* which sanple */
struct note *left; /* left node */
struct note *right; /* right node */

} Note;

typedef struct pat_node {
unsi gned | ong note_key; /* which note */
struct pat_node *next; /* next node */
} Pattern_Node;

typedef struct a_pattern {

www.manaraa.com

char key; /* pattern key */
Patt ern_Node *head; /* list head */
} Pattern[4];

typedef struct song {

char pat _num /* which pattern */
struct song *next; /* next node */
} Song;

typedef struct pnodule {

Song *sequence; /* pattern seq. */

Pattern patterns[64]; /* arr of patt. */

Note *root; /* note tree */

Sanpl e sanpl es[31] ; /* arr of sample */
} PMhbdul e;

The music editor

We have built a music editor with a graphical user interface to allow the user to compdise or
songs.In enteringnotevalues,it usesthe commonmusic notation.A translatorconvertsthe
graphical note symbols into appropriate note values. The translator accepts the notesgimbol
position on thestaff and searches table for the correspondingiote value andlength. Screen
position information of note and other symbols are also maintainedto enable deletion,
insertion, and loading operation.

When an editing session ends, the pMusic data structure,&itnthe screeninformation, is
saved into the disk by calling the pprintf function. The typestring parameter is :

"s*sc*r-ab4a4dsc*sl*r----*slicccc*r*r-a31sca20c-ccii*c---"

To load thesong, the sametypestringis passed athe parameteof pscanf,andbasedon the
screen information file, the graphical image of the song is restored on the screen.

The music player

PersistenMusic playeris a modification of ordinary MOD players[8,5]. It is an interrupt-
basedprogramcombinedwith a polling techniguethat checksa double-bufferfor datato be
read by the sound card (wee SoundBlasterPro card) using Direct Memory Access(DMA)
mode[18]. From the macrovision, the pMusic player is basically a note tracker driven by
interrupt. It tries to scan and play notes in all tracks of the pattethe ander specifiedby the
pattern sequence.

The main part of the player is the tracker. It tracks down the pattern sequéndeotat which

note and what sample to play. Because each track in the paitetapendenof eachother, it
is necessaryo treatits notesindependentlytoo. This is doneby settinga counterto each

www.manaraa.com

track, whosevalue dependsn the notelength. The longer the note, the greaterthe counter
value.

Note value Counter value
whole note (1/1) 15
half note (1/2)
guarter note (1/4)
eighth note (1/8)
sixteenth note
(1/16)

o F| w N

Every time the tracker is called, it decrements all counters fortesadh If the counterreaches
zero, the subsequenmoteis trackeddown, its samplenumberis associatedvith the sample
array, and (a portion of) the sample data is placedltbuffer. Otherwise the trackerkeeps
playing the current note's sample.

The tracker also maintains a pointer, called Roveachtrack to detectthe end of the pattern.
Row is advanced every time a note is read, following the track linked-list. When the last note
read,it will pointto NULL, andit will signalthe endof thetrack. An endof patternoccurs
whenall Row pointerspoint to NULL and all countershave zero value. When anend of
pattern is encountered, the tracker will determinenthé patternto be playedfrom the pattern
sequence list.

Figure5 showsan exampleof how the trackerworks. Treating eachtrack independentlyof

each other, it decrements every nobeinterin eachtrack everytime it is called.If ¢=0 it will
load a new note, otherwise it keeps playing the current note's sample.

www.manaraa.com

ic=3 ic=3 ic=3 ic=3

»| note #1l »-| note #2 »-| note #3 »| note #4
len:1/4 len:1/4 len:1/4 len:1/4
))) row[0] = NULL 4
ic=5 ic=1 ic=7
»| note#5 »| note #6 »-| note #7
len: 3/8 len:1/8 len:1/2
row[1] = NULL
row[2] = NULL
when row[i] == NULL,
the pattern ends
row[3] = NULL

the timing diagram for the above pattern
end of pattern y

track #0 pw1 #2 #3) #4)
3 F2|clcOk:3|c:2 el Je:0 ki3 fci2 fe:l |ci0 k3 fc:2 Jeil |c:0

track #1 p#s #6 #]
-5 F:4|c:3 2 |c:lfc0 fc:1 |c:0 k:7 |ci6 |ci5 |c:4 fe:3)c:2 Jc:1 |c:0

track #2

track #3

— EXxecution time (ticks)

¢ : counter value
ic : initial counter value
len : note length

Figure 5 : Timing technique of the pMusic player

Discussion

We have designeda minimal extensionto the C languageto program persistenceAs an
application of persistence, we used the language in developing a music edptayanaith a
persistent data structure. Our approach has several advantages.

. Improved structure.
In pMusic the structural part of a music is clearly defireathpartis separatedrom the
other. This makesthe music more readable However, we realize that further work is
needed to implement full reusability; that is, users should beé@kd&e partsof a music
pieceanduseit in constructingnew piecesWe areworking to remodelthe persistence
routines to add this capability.

. Improved flexibility.
We haveremovedthe restriction which the MOD format has onthe patternsize. This
gives greater flexibilityto the users.A usercannow concentraten the composingtask
without worrying about the pattern size. The pattern formektescomposingevenmore
easier,becausea userneedsto enteronly notes'pitch and length in their normal way,
without having to position the notes in the correct place as in a module editor.

www.manaraa.com

. Simpler way of storing and loading of song modules.
For a programmer who wants to build a different pMusic editor and player, this is a great
advantage, because the loading ad storing of a module can be performed by calling a
single function. Again, the programmer can now concentrate on programming the editor
or the player, rather than doing distracting tasks like coding disk i/o or converting data
from one structure to another.

This flexibility and structuring,however,comesat a cost. Patternsand notes, while their
uniquenesscan save space,take longer to edit becauseof the necessityto check their
uniqueness. However, this happens during editing sessions where the human-intaicotion
tends to hide the additional internal processing overhead. The structuphtysit meansthat
during play back, the player has to traverse a longer pagt tonote. Moreover,the dynamic
length of each track in a pattern makes the tracker spend extra processing time to ¢heirk for
ends. The effect of this delay on the testswe conductedwas not uniform. Some samples
producedslight audible'clicks’, while somedid not. We havetried to minimize the delay by
using assemblylanguageprogrammingin all time-critical tasks. More work is neededin
optimization terms to avoid the delay.

Conclusion

To summarize, these ofpersistentdatastructuresor computermusic hasresultedin a very

flexible andstructuredmechanisnwith spacesavingsand potentialfor reusability.However,

our experiment has also shown that optimization is needed incas®a&0 avoid performance
deterioration.

Acknowledgments
This research was partly supportegdan AustralianResearctCouncil grantfor the Persistent
Reusable Object Environment (PROBE) project.

References

[1] M. Anderson,R. D. Poseand C. S. Wallace, A Password-CapabilitySystem,
Computer Journal29(1), 1986, pp. 1-8.

[2] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, aneldtrison, An
Approach to Persistent Programmi@pmputer Journal26(4), 1983, pp. 360-365.

[3] P. W. Cockshott,M. P. Atkinson, K. J. Chisholm,P. J. Bailey, and R. Morrison,
Persistent Object Management Syst8uoffware-Practice and Experiendel(1), 1984,
pp. 49-71.

www.manaraa.com

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. T. Davie Musical Structure and Desigover Publications Inc, NY, 1966.

C. Hasan, Tiny MOD Player, Available via anonymousftp from nic.funet.fi in
/pub/msdos/sound/sb/tinyplay.zip, December, 1993.

R. Heimlich, D. M. Golden,I. Luk, and P. M. Ridge, SoundBlaster: The Official
Book Osborne McGraw-Hill, 1993.

G. JacobsandP. GheorgiadesMusic and New Technology:The MIDI Connection
Sigma Press, Winslow, England, 1991.

J. Jensen, Protracker for IBM PC, Available via anonymous ftp from
wasp.eng.ufl.edu in /pub/msdos/demos/programming/source/pps110.1zh, July, 1993.

N. Lin, MODEDIT v3.01 Documentation, Available via anonymdipsfrom simtel-20
or its mirrors.

R. Morrison, F. Brown, R. ConnoandA. Dearle, The Napier88ReferenceManual,
Technical Report PPRR-77-89niversity of St Andrews, 1989.

L. Nugroho,An Implementatiorof PersistentData Structuresin C, Working Paper,
James Cook University, May, 1993.

J. Pressing,SynthesizePerformanceand Real-TimeTechniquesOxford University
Press, 1992.

J. W. Ratcliff, Examining PC Audi®r Dobb's Journal 18(198), March, 1993.

J. E. Richardson,M. J. Carey, Persistencein the E Language: Issues and
ImplementationSoftware-Practice and Experiend(12), 1989.

A. S. M. Sajeev, A. J. HursBrogrammingPersistencén X, IEEE Computer 25(9),
1992, pp. 57-66.

A. S. M. Sajeev,SomeReusabilityExercisedn PersistentC, Journal of Computing
and Information pp. 1160-1175, 1994.

G. van Rossum, FAQ: Audio File Formats, Available via anonymousftp from
ftp.cwi.nl, March, 1993.

R. Watson, DMA controller Programmingin C, The C UsersJournal 11(11),
November, 1993.

www.manaraa.com

www.manaraa.com

